DOI: 10.1002/cmdc.200700217

Sensitive, Selective, and Irreversible Inhibition of Cyclooxygenase-2 Activity by Copper

Seiichi Nagano^[a] and Ashley I. Bush^{*[a, b]}

Cyclooxygenase (COX) is a proinflammatory enzyme that catalyzes the rate-limiting reaction to produce many important prostaglandins from arachidonic acid.^[1] COX has two isoforms. COX-1 is the constitutive type, widely expressed in various tissues, that serves the basal production of prostaglandins. COX-2 is the inducible type that is upregulated by inflammatory mediators and growth factors such as interleukin-1 and tumor growth factor β . COX produces prostaglandin H₂ (PGH₂) by two consecutive catalytic activities. Arachidonic acid is converted to prostaglandin G₂ (PGG₂) by the authentic "cyclooxygenase" activity at first, and then PGG₂ is reduced to PGH₂ by the peroxidase activity of the enzyme. PGH₂ is further converted to prostaglandin E₂ (PGE₂), a prostaglandin that has physiological functions such as platelet aggregation.^[1]

COX has a heme at the active site and the redox state of the heme is crucial for cyclooxygenase and peroxidase activities of the enzyme.^[2] However, COX is subject to self-inactivation, possibly because of the oxidation of a tyrosine residue at the heme active site of the enzyme.^[3] Therefore, COX is liable to lose its activity by oxidative modification of the enzyme.

COX-2 expression is reported to increase in inflammatory diseases such as rheumatoid arthritis (RA),^[4,5] and neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS)^[6] and Alzheimer disease (AD)^[7] where the enzyme oxidatively crosslinks with β -amyloid.^[8] Therefore, nonsteroidal anti-inflammatory drugs (NSAIDs), typical inhibitors of COX-2, may have beneficial effects on these diseases.^[9–11] There is evidence that aberrant metabolism of Cu²⁺, a redox-active biometal that can cause the oxidation of proteins, may also play a pathogenic role in these conditions.^[12–15]

Herein, we report that COX-2 is specifically inactivated by the physiological concentration of Cu^{2+} ions, and discuss its relevance in a clinical situation.

Table 1 shows the effects of various biometals on the production of PGE₂ by COX-2 activity. We measured PGE₂ production to reflect COX-2 activity, as PGE₂ is the major end-product of the partially-purified enzyme,^[17] and can be sensitively quantified by EIA. We did not find any production of PGE₂ from the

[a]	Dr. S. Nagano, Prof. A. I. Bush
	Laboratory for Oxidation Biology
	Genetics and Aging Research Unit and
	Department of Psychiatry
	Harvard Medical School
	Massachusetts General Hospital East
	Bldg 114 16th Street, Charlestown, MA 02129 (USA)
	Fax: (+61) 393-875-061
	E-mail: bush@helix.mgh.harvard.edu
[b]	Prof. A. I. Bush
	Mental Health Research Institute of Victoria and Department of Patholo

Mental Health Research Institute of Victoria and Department of Pathology The University of Melbourne Parkville, Victoria 3052 (Australia)

Table 1. Inhibition of PGE_2 production by various biometals. ^[a]		
Metal ion	PGE_2 production [µg L ⁻¹]	
(-)	215.9±16.7	
Cu ²⁺	$119.0 \pm 8.9^{[b]}$	
Fe ³⁺	202.4 ± 26.5	
Zn ²⁺	198.2±16.8	
Co ²⁺	182.0 ± 24.9	
Ni ²⁺	236.5 ± 3.2	
Mg ²⁺	182.4±47.4	
[a] Ovine COX-2 (140 nm) was incubated with a metal (500 nm) for 1 h at 37 °C. The data indicate the average \pm SD of triplicate results. [b] Significantly decreased compared to COX-2 alone sample (P < 0.01, t test).		

sample without COX-2 (data not shown). At 500 nm, only Cu²⁺ inhibited PGE₂ production significantly (P < 0.01, t test) by $\approx 50\%$. The ligand for Cu²⁺ (3 µm glycine) itself caused no inhibitory effect on the enzyme (data not shown). The background levels of Cu²⁺ in our buffers is routinely measured at less than 20 nm,^[18] which was considered negligible compared with the concentration of Cu²⁺ added in this study.

 Cu^{2+} inhibited COX-2 activity in a concentration-dependent manner (Figure 1). The IC_{50} for Cu^{2+} was ≈ 500 nm, which is a stoichiometric ratio of 3.5:1 (Cu^{2+}:enzyme). On the other hand, in the presence of 10 μm EDTA, the inhibitory effect of Cu^{2+} at concentrations up to 2000 nm was abolished (Figure 1). The amount of PGE₂ produced in the presence of EDTA without Cu^{2+} was less than that in the sample lacking EDTA. This might be explained by EDTA chelating some Fe on the heme from the active site of COX-2, so decreasing the activity of the enzyme.

Figure 1. Cu inhibition of COX-2 activity is concentration-dependent. Ovine COX-2 (140 nm) was incubated with various concentrations of Cu with (squares) or without (circles) 10 μ m EDTA for 1 h at 37 °C. The data indicate the average \pm SD of triplicate results.

© 2008 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

CHEMMEDCHEM

We next examined the effect of Cu²⁺ on the inhibition of COX-2 activity by indomethacin, a nonspecific inhibitor of COX (Figure 2). At 100 nm, Cu²⁺ itself did not inhibit PGE₂ production, consistent with our results in Figure 1. However, the same concentration of Cu²⁺ (100 nm) significantly potentiated the inhibition of PGE₂ production by low concentrations of indomethacin (5–10 nm, P < 0.05, t test).

Figure 2. Synergistic effect of Cu on the inhibition of COX-2 activity by indomethacin. Ovine COX-2 (140 nm) was incubated with (gray bars) or without (black bars) 100 nm Cu at various concentrations of indomethacin for 1 h at 37 °C. The data indicate the average \pm SD from triplicate results. * *P* < 0.05, ** *P* < 0.01, t test.

To determine whether the inactivation of COX-2 by Cu²⁺ is a reversible process, we investigated the effect of EDTA on COX-2 activity after the inactivation by Cu (Figure 3). Cu²⁺ (1 μ M) inhibited COX-2 activity compared to the samples without Cu (P < 0.001, t test), consistent with the earlier data (Figure 1). Whereas the inhibition is prevented by co-incubation with EDTA (10 μ M) (Figure 1), when EDTA (1–10 μ M) was added after the incubation with Cu, it did not restore the inhibition of COX-2 activity, indicating that Cu²⁺ -mediated inhibition was irreversible.

We have shown that Cu²⁺ inhibits COX-2 activity specifically among biometals. This inhibition may be relevant to the regulation of COX-2 activity in vivo, because the concentrations of Cu necessary to inactivate COX-2 (IC₅₀ \approx 500 nm) are much lower than in human serum (15–30 μ m)^[19] and the human brain (40–90 μ m).^[20] By way of comparison, Cu²⁺ also inhibits the activity of SOD1 (20 nm) with an IC₅₀ of 2.35 μ m.^[21] Although there is almost no free Cu²⁺ in the cell,^[22] the total levels of Cu rise with age^[23,24] and may exist in a pool that could exchange with COX-2.

Although the mechanism by which Cu^{2+} inactivates COX-2 is unclear, the irreversible change of the activity (Figure 3) implies that Cu^{2+} causes the oxidative modification at the active site of the enzyme possibly by hydrogen peroxide or hydroxyl radicals. As dopamine is present, it is possible that the Cu^{2+} is reduced to Cu^+ , which may be the species responsible for the chemical attack. Oxidative modification of a tyrosine residue in COX is associated with the self-inactivation of the enzyme.^[3] It is not likely that the inhibitory effects of Cu^{2+} on COX-2 activi-

Figure 3. Inhibition of COX-2 activity by Cu is irreversible. Ovine COX-2 (140 nm) was incubated with or without 1 μ m Cu for 1 h at 37 °C. After that incubation, various concentrations of EDTA (μ m) were added to the sample and incubated for 30 min at 37 °C. The data indicate the average \pm SD from triplicate results.

ty is merely caused by direct dopamine oxidation, as Fe^{3+} , an even more potent means of oxidizing dopamine,^[25] did not affect COX-2 activity (Table 1). Also, when EDTA is added after one hour to COX-2 that has been incubated with Cu^{2+} the enzyme maintains considerable activity (Figure 3); at this point all the Cu^{2+} has been chelated by the excess EDTA, so the residual activity indicates that the dopamine substrate has not been exhausted through being oxidized by Cu^{2+} .

We also observed a synergistic effect of Cu^{2+} on the inhibition of COX-2 activity by indomethacin (Figure 2). Cu^{2+} at a subtoxic concentration might make the enzyme liable to inactivation by indomethacin, or Cu^{2+} might directly bind to indomethacin and reinforce the pharmacological effect of the agent. Cu^{2+} is known to form a complex with NSAIDs including indomethacin^[26] and to potentiate their anti-inflammatory activities.^[27-30] The structural basis for this awaits determination but the possibility that the pharmacological action of NSAIDs is potentiated by tissue Cu^{2+} may be important in treatment strategies of inflammatory conditions.

The inhibition of COX-2 activity by Cu may be a basis for the physiological and pathological roles of Cu in aging, RA, and AD. COX-2 activity is known to increase by aging in the rat brain.^[31] Cu content also increases with age, especially in the brain.^[21, 23, 24, 32] This could serve a protective function to suppress the unwarranted COX-2 activity. On the other hand, Cu levels are decreased in erythrocytes and mononuclear cells in patients with RA,^[12,13] and in the hippocampus of AD brains,^[14,15] although COX-2 expression is induced in affected regions of these diseases.^[4,5,7] Therefore, an imbalance between intracellular Cu²⁺ level and COX-2 expression may occur in these diseases. In fact, intramuscular administration of Cu²⁺ complexes has been reported to induce symptom remission in RA patients.^[33] Cu²⁺-thiocomplexes also have been described to have anti-inflammatory and anti-arthritic effects in rats^[34] and "copper bracelets" have been described to be of therapeutic value in arthritis sufferers.^[35] Our current studies demonstrate that small (nanomolar) elevations of Cu²⁺ could serve to inhibit COX-2 activity. These data may help illuminate the complex interplay between Cu^{2+} and COX-2 activity in conditions such as RA, AD, and ALS.

Experimental Section

Standard metal solutions were obtained from the National Institute of Standards and Technology for Cu²⁺, Zn²⁺, and Fe³⁺ (10 mg mL⁻¹ in 10% HNO₃), and from Plasma Chemical Corporation for the other metals (1 mg mL⁻¹ in 2% HNO₃). Stock solutions of metal ions were prepared at 10 mM with 60 mM ligand (histidine for Zn²⁺, citrate for Fe³⁺, and glycine for the other metals, all from Sigma, St. Louis, MO) in Dulbecco's phosphate buffered saline without calcium and magnesium (PBS, Sigma). pH was adjusted to 7.4 with 1 N sodium hydroxide. Indomethacin (Sigma) was dissolved in ethanol at the concentration of 10 mM. Every reagent was diluted with PBS from stock solutions.

The inhibition assay of COX-2 activity was performed according to the method of Mattammal et al., 1995.^[16] Purified ovine COX-2 (Cayman Chemical, Ann Arbor, MI) was incubated at 140 nm with metals, EDTA, or indomethacin in a total volume of 100 μ L for 1 h at 37 °C, in the presence of 100 μ m dopamine (Sigma) as a reducing co-substrate. To examine the effect of EDTA after the inactivation of COX-2, EDTA was added after 1 h incubation of COX-2 with Cu²⁺ and incubated for 30 min. After this incubation, the enzymatic reaction was initiated by adding 5 μ L of 20 μ m hematin (Sigma) and 5 μ L of 2 mm arachidonic acid (Acros Organics, Geel, Belgium), and reacted for 3 min at 37 °C. The reaction was stopped by adding 100 μ L cold ethanol. The production of PGE₂ was quantified by STAT-Prostaglandin E₂ EIA Kit (Cayman Chemical) according to the manufacturer's instructions.

Data were expressed as mean \pm SD. Statistical differences were determined by t test. P < 0.05 was considered to be significant.

Acknowledgements

This work was supported by NIH R01-AG12686, the Alzheimer's Association, the Australian Research Council Federation Fellowship, and the National Health & Medical Research Council (to A.I.B.). S.N. is a recipient of Uehara Memorial Foundation Postdoctoral Fellowship.

Keywords: copper · cyclooxygenase-2 · indomethacin inflammation · prostaglandin

- [1] W. L. Smith, D. L. DeWitt, R. M. Garavito, Annu. Rev. Biochem. 2000, 69, 145–182.
- [2] A. Tsai, R. J. Kulmacz, Prostaglandins Other Lipid Mediators 2000, 62, 231–254.
- [3] G. Wu, C. Wei, R. J. Kulmacz, Y. Osawa, A. L. Tsai, J. Biol. Chem. 1999, 274, 9231–9237.
- [4] R. Y. Kang, J. Freire-Moar, E. Sigal, C. Q. Chu, Br. J. Rheumatol. 1996, 35, 711–718.
- [5] I. Siegle, T. Klein, J. T. Backman, J. G. Saal, R. M. Nusing, P. Fritz, Arthritis Rheum. 1998, 41, 122–129.

- [6] K. Yasojima, W. W. Tourtellotte, E. G. McGeer, P. L. McGeer, Neurology 2001, 57, 952–956.
- [7] L. Ho, D. Purohit, V. Haroutunian, J. D. Luterman, F. Willis, J. Naslund, J. D. Buxbaum, R. C. Mohs, P. S. Aisen, G. M. Pasinetti, *Arch. Neurol.* 2001, 58, 487–492.
- [8] S. Nagano, X. Huang, R. D. Moir, S. M. Payton, R. E. Tanzi, A. I. Bush, J. Biol. Chem. 2004, 279, 14673–14678.
- [9] M. E. Turini, R. N. DuBois, Annu. Rev. Med. 2002, 53, 35-57.
- [10] B. A. in t'Veld, A. Ruitenberg, A. Hofman, L. J. Launer, C. M. van Duijn, T. Stijnen, M. M. Breteler, B. H. Stricker, *N. Engl. J. Med.* **2001**, *345*, 1515–1521.
- [11] P. N. Pompl, L. Ho, M. Bianchi, T. McManus, W. Qin, G. M. Pasinetti, FASEB J. 2003, 17, 725–727.
- [12] S. Tuncer, A. Kamanli, E. Akcil, G. O. Kavas, B. Seckin, M. B. Atay, *Biol. Trace Elem. Res.* **1999**, *68*, 137–142.
- [13] A. Wanchu, A. Sud, P. Bambery, R. Prasad, V. Kumar, Ann. Rheum. Dis. 2002, 61, 88.
- [14] L. O. Plantin, U. Lying-Tunell, K. Kristensson, *Biol. Trace Elem. Res.* **1987**, *13*, 69–75.
- [15] M. A. Deibel, W. D. Ehmann, W. R. Markesbery, J. Neurol. Sci. 1996, 143, 137–142.
- [16] M. B. Mattammal, R. Strong, V. M. Lakshmi, H. D. Chung, A. H. Stephenson, J. Neurochem. 1995, 64, 1645–1654.
- [17] M. Yu, D. Ives, C. S. Ramesha, J. Biol. Chem. 1997, 272, 21181-21186.
- [18] M. F. Jobling, X. Huang, L. R. Stewart, K. J. Barnham, C. Curtain, I. Volitakis, M. Perugini, A. R. White, R. A. Cherny, C. L. Masters, C. J. Barrow, S. J. Collins, A. I. Bush, R. Cappai, *Biochemistry* **2001**, *40*, 8073–8084.
- [19] M. Araya, M. Olivares, F. Pizarro, M. A. Mendez, M. Gonzalez, R. Uauy, J. Nutr. 2005, 135, 2367–2371.
- [20] R. Rahil-Khazen, B. J. Bolann, A. Myking, R. J. Ulvik, J. Trace Elem. Med. Biol. 2002, 16, 15–25.
- [21] H. R. Massie, V. R. Aiello, A. A. Iodice, Mech. Ageing Dev. 1979, 10, 93-99.
- [22] T. D. Rae, P. J. Schmidt, R. A. Pufahl, V. C. Culotta, T. V. O'Halloran, Science 1999, 284, 805–808.
- [23] C. J. Maynard, R. Cappai, I. Volitakis, R. A. Cherny, A. R. White, K. Beyreuther, C. L. Masters, A. I. Bush, Q. X. Li, *J. Biol. Chem.* **2002**, *277*, 44670– 44676.
- [24] C. J. Maynard, R. Cappai, I. Volitakis, R. A. Cherny, C. L. Masters, Q. X. Li, A. I. Bush, J. Inorg. Biochem. 2006, 100, 952–962.
- [25] A. Hermida-Ameijeiras, E. Mendez-Alvarez, S. Sanchez-Iglesias, C. Sanmartin-Suarez, R. Soto-Otero, *Neurochem. Int.* 2004, 45, 103–116.
- [26] S. Ramadan, T. W. Hambley, B. J. Kennedy, P. A. Lay, Inorg. Chem. 2004, 43, 2943–2946.
- [27] J. R. Sorenson, J. Med. Chem. 1976, 19, 135-148.
- [28] M. Roch-Arveiller, D. P. Huy, L. Maman, J. P. Giroud, J. R. Sorenson, *Bio-chem. Pharmacol.* **1990**, *39*, 569–574.
- [29] M. Roch-Arveiller, V. Revelant, D. Pham Huy, L. Maman, J. Fontagne, J. R. Sorenson, J. P. Giroud, Agents Actions 1990, 31, 65–71.
- [30] M. Lecomte, O. Laneuville, C. Ji, D. L. DeWitt, W. L. Smith, J. Biol. Chem. 1994, 269, 13 207–13 215.
- [31] B. S. Baek, J. W. Kim, J. H. Lee, H. J. Kwon, N. D. Kim, H. S. Kang, M. A. Yoo, B. P. Yu, H. Y. Chung, J. Gerontol. Ser. A 2001, 56, B426–431.
- [32] A. Morita, M. Kimura, Y. Itokawa, Biol. Trace Elem. Res. 1994, 42, 165– 177.
- [33] J. Aaseth, M. Haugen, O. Forre, Analyst 1998, 123, 3-6.
- [34] M. W. Whitehouse, W. R. Walker, Agents Actions 1978, 8, 85-90.
- [35] W. R. Walker, D. M. Keats, Agents Actions 1976, 6, 454–459.

Received: August 21, 2007 Revised: October 23, 2007 Published online on November 14, 2007